In any 21st century Academic Institution, the Library is required to provide better ways of resource discovery in response to user demand, be they pre-harvested or real time. The library needs to look at the Institution’s strategy on research and teaching & learning and align itself to support that.

This presentation will focus on why we chose a federated search system, the rolling out of the Library Federated Search system University wide - the training sessions; continuous upgrading of the system and the follow-on training; how users see it enhancing their research practices.
University College Cork is founded in 1845 and is one of three Queen's Colleges in Cork, Galway and Belfast.

It is the first university in the world to be awarded the international Green Flag for environmental friendliness in 2010.

It was the first third-level institution to be awarded the ISO 50001 standard in energy management.

UCC is ranked in top 2% of universities worldwide, based on the quality of its research output and peer esteem.

UCC is voted Best University in Ireland by The Sunday Times four times in the past decade, the only Irish university to have won this accolade.

It is voted third in world's universities for environment-friendly university management (Universitas Indonesia Greenmetric World University Ranking system 2013)
Overview

Students

- Founded in 1845 – one of 3 Queen’s Colleges in Ireland.
- Offers over 120 degree & professional programmes.
- Student number, as of 2014:
 - C.20000 full time; c. 16000 undergraduates, 4000 Masters & PhD students.
 - 3000 International students.
 - 2000 part-time students.
 - 93% graduates get jobs or go on to further education.
 - One of the larger employers in the region – c.2,800 people.

Income & Prestige

- Annual research income from the EC/FP7 sources - €10.6 million, a 40% increase.
- Income from new awards from EU - €13.1 million, a 170% increase since 2008/2009
- Non-exchequer research funding – 25% of UCC’s income.
- Number of citations per journal publication – 30% increase.
- 62% of Ireland’s most highly cited researchers are from UCC.
UCC Library
Total number of Staff: 79
Electronic Databases: 301
Subscribed Databases: 248
Open Access Databases: 53
ERM system: CUFTS (Open Source, but hosted by the provider- reSearcher suite)
E-journals in our KB = 91263
2,194 serials in print
735,000 titles (of which approximately 220,000 are e-books)
Federated Search System: Explorit/Searcher – hosted by DWT (Deep Web Technologies)
Some useful information

- Staff number = 80
- Electronic databases = 301
- Of which, subscribed databases = 248
- Open Access databases = 53
- ERM (Electronic Resources Management) system = CUFTS (Open Source, but hosted by the provider – reSearcher suite in SFU, Canada)
- E-journals in our KB = 91263
- Journals in print = 2194
- Books = 735000 titles 90% of which 220000 are E-books
- Federated Search System = Explorit/Searcher (hosted by DWT, Deep Web Technologies)
On the 2nd November 2015, UCC will mark the 200th anniversary of the birth of George Boole, the first Professor of Maths at the newly founded university in 1849. Boole was a self-taught mathematician, logician and philosopher who introduced the principles of mathematics to the study of reasoning and logic.

A century later, Boolean logic was applied by an MIT engineer (Claude Shannon) studying the transmission of information, thereby laying the foundation stone for the digital age. He is also known as “the father of information theory”.

Boole and Shannon both understood that the codification of thought and the communication of information can help to process and distribute knowledge, but in so doing it can also create uncertainty as rational data structures necessarily involves some simplification, so contextual detail gets lost in translation. Also, the act of collecting and distributing information can itself distort the contents of the message. Finally, that all communication of information is subjective, and the same data can mean different things to different people.

The world of Information Technology has progressed a lot since then. Before, Information systems have traditionally been designed to give visibility of tasks and activities, quantifying the consumption of valuable resources from an economic viewpoint. Today, we have moved on to Latent Semantic Analysis to closely match human judgments of meaning similarity between words and to objectively predict the consequences of overall word-based similarity between passages.

(http://lsa.colorado.edu/papers/dp1.LSAintro.pdf). This is also known as Semantic Query Process – entity matching and user context.
UCC Library has been awarded the ‘Excellence in the provision of services for a Digital Library’ in the ‘Excellence in Business Awards 2015’ by Public Sector Magazine, two years in a row. This award highlights the importance of meeting the information needs of all our library users in the context of new digital technologies and online resources. It also highlights how vital it is to meet such needs of our library users in a way and time of their choosing.

Keeping that in mind, in order to provide maximum exposure to all our resources we have created a search box on our main page that gives the users a choice of either a global or individual title/catalogue/database searching. This is our landing page.
Main search box and Journals portal.
Database Portal.
Searcher/Explorit – our federated search system.
Results page.
As an academic librarian, I am probably qualified to talk more about education than about commercial enterprises. My experience in using commercial enterprises is like 90% of other web users – booking holidays, flights online or buying products online. And even though I can navigate quite well through the web while looking for a scholarly article, I am often beaten by sites that are so complicated that halfway through I can’t remember where I began or what my original query was. And I feel like an old fool!!!

This is the background in using this slide. As Howard Gardner pointed out: human beings are born with multiple intelligences ... (Gardner, 1999), one size does not fit all! We need to be mindful of different user’s different approach to the same subject while looking for products that can provide maximum exposure to our Institutional Knowledge Base. We are not talking about corporate knowledge as such, but resources sitting on a third party server, our own Institutional Repository and the OPAC.

At the same time, many Universities do not have deep pockets to cater for every category of users. There has to be a happy medium. For the library, it has to act as a resource base with the greatest visibility and flexibility that suits the largest number of students – be they undergraduate or researchers & post-graduates.

In a situation like this, any system that can provide better discoverability of what is within these resources from a single search point will have an advantage over single resource searching that is time consuming and could be frustrating at some points.
Value of Libraries for Research

As we know, libraries work in a different way and so do librarians! We are trained in facilitating discovery & access to knowledge.

But, since many researchers – senior ones especially – are relatively autonomous and do not visit the library very much, they can be quite unseen.

Many libraries are now trying to find ways to establish better links with academic departments and researchers, so that they not only help individual researchers with their immediate information needs, but can also promote improvements in research practice.

Libraries are also seeking to change the roles of subject and other specialists, so that they act more like consultants, working in partnership with academic departments. Increased emphasis is placed on specialists developing a more detailed understanding researchers’ needs and behaviours, and identifying opportunities to help make researchers’ lives simpler.

With an ever shrinking content budget - many institutions are now seeking to adopt an approach to achieve more with less; for example by:

a) Exploiting Open Access (OA) content, including OA journals and repositories, and promoting them to researchers.

b) Promoting access and use of procured content by improving resource discovery (eg by improving link resolvers and providing better search interfaces), by promoting the content available through the library, and helping researchers to access and use it.
How it came about – UCC story

In 2005, e-journals and databases started to come on stream and academic libraries in Ireland, faced with an increasing number of e-resources, started looking for an ERM – Electronic Resources Management, system that would provide greater visibility and accessibility. So when I attended the ER&L conference in Atlanta, Georgia in 2008 we were searching for an ERM system to cope with a growing demand for e-access. I asked and got answers in bucket load – learn from our mistakes.

We looked at the commercial products available at that time, and at the end acquired reSearcher suite for the Library. This is an Open Access software system developed by Simon Fraser University in Canada and is capable of doing almost everything that we require, but without any fancy frills! The system also included a federated search system. They also hosted the whole ERM system for us.

In 2009 we went live with reSearcher suite. After some initial hesitation, usage went up! Today, just for the month of August when the University is on out of term mode, the system has been accessed 23820 times from Campus and 80770 through our proxy server; this is a sum of library and remote access. (104590)

In mid-2010, we were notified that the federated search tool would no longer be supported by the vendor. The Library would need to bring this open source service in house or replace it with another product by 2011. We successfully brought the product in-house but it soon became apparent that the upkeep and maintenance of connectors for this tool was beyond our ability to support without devoting extensive staff time to the system. Also, it did not represent the most up to date version of the discovery products available on the market at that time.

So we set up a project team with a remit of 6 months.
Setting up the Project

It was surprising to find out that in 2 years the whole ERM scene has moved forward at an amazing speed. We have now Discovery tools rather than only the Federated Search systems, each one fancier than the other!

A cross divisional Working Group was formed in March 2011 and a separate section set up in the Library intranet for the extensive list of documents and links to trials.

Head of Library IT: Liaise with Senior Management Team and keeping them abreast of progress.

E-resources Librarian: Research existing services; produce briefing papers for Working Group members; chair meetings when necessary; liaise with members regarding feedback from staff; collate and disseminate information received.

Working Group members: Discuss the briefing papers; meet with wider division staff and discuss relevant points; get feedback on trials; look at chosen products and make a decision on what to buy based on best practice criteria.
On investigating the current discovery tools on offer it became apparent that this is a rapidly changing and evolving landscape in which the distinction between federated searching products (which search resources in real time) and discovery tools (which pre-indexes content, making searches fast and easy) is becoming less distinct.

So we looked at best practice on how to proceed with selection that became the remit for the group.

1. Formally state the criteria for selection.
2. Look at online trial version of as many of the products as possible.
3. Schedule and attend demos of the leading products on site.
4. Channel feedback from staff to the working group.
5. Contact other institutions to gather information on their experience with different products.
6. Explore any local requirements specific to UCC.
7. Make a final recommendation for the product.
Horizon Scanning

Looked at both Commercial and Open Source products available at that time.
My role was:
Horizon scanning and information gathering on products.
To produce a briefing paper for the Working Group recommending specific products for trialling.
I prepared a paper on the technical aspects of both a Discovery Tool and a Federated Search System and circulated them. I then downloaded an excel sheet on Parameters & Cost to consider, from a paper given in 2011 ER&L (Electronic Resources & Libraries) conference in the USA, and added other areas that we specifically will need to look into.
The group met regularly and kept up a lively email discussion of various products. The group did channel feedback and questions from Library staff; talk to vendors at conferences; and many Library staff attended the vendor demos on site.

The Working Group chose the top vendors to explore according to 1) the criteria; 2) input and comments from Library staff; and 3) comments and discussion with colleagues from other libraries including experiences with implementations.
We used these Parameters to evaluate the available products.

Our criteria was:

General:
- The product must be competitively priced and offer the best value for money in terms of coverage, functionality and stability.
- The product should have an attractive simple search interface which is capable of being customised with the library logo and colours.
- The product should render on standard browsers and there should not be the requirement to download additional software to use the system.

Searching and Indexing:
- The product should search across an index of third party commercial database content as well as internal library database content.
- The product should be able to include the Library Catalogue (MARC) and the UCC Institutional Repository (OAI data) in searches.
- Supplier should provide a list of third party commercial database content currently included in the index so the library can assess to what degree their subscriptions are covered by the product.
- The product should return results in a timely efficient fashion, ideally within seconds.
- The search box should have a default Boolean operator of AND with additional support for wildcards, word stemming and phrase searching.
- Search suggestions should operate in the case of a misspelling.

Display and Search Results:
- The results should be displayed in relevance ranked order.
- It should be possible to restrict results to full text only.
- The results should be deduplicated.
- It should be possible to save, email and export search results.
- It should be possible to further refine the search by subject and other criteria.
- An advanced search should be available which has the ability to search by defined fields.
- It should be possible for the library to personalise search e.g. define collections that can be searched by different groups of users i.e. search of arts materials, science materials.
Other Areas to Consider

Compatibility with other software systems:
• The product should work with the library’s CUFTS and GODOT (Link resolver) products in linking to fulltext for authorised users (using Open URL technology).
• It should be possible to embed the search in other spaces (such as Blackboard) by means of widgets or an API. (Application Programme Interface)
• The product should include management reports.
• The system should be available on a 24/7 basis and be unaffected by activity at other sites (if hosted).
We looked at all the commercial and open source products on the market in 2011 and chose 6 of them that matched our criteria.

4 Discovery tools and 2 Federated Search systems vendors were invited to give demonstration and to arrange a trial for a month. Once the trials were over, the Working Group started their deliberation on evaluating each one of them. It was an arduous process, as there were many questions that needed vendor clarification.

Vendors were contacted and invited to provide a demo site for testing and display of searches and to do an on-site demo.

At the end the Group settled on 2 products, one from each category. The final choice was extremely difficult as both of them were equally good. Our evaluation and research showed that Discovery Tools are favoured by more undergraduate students while researchers prefer to do extremely specific searches relevant only to their research topics. In the latter case Federated Search System is a clear winner. We then had to look at our Strategic Plan – whether we want it to be a Research Library or an Undergraduate Library. We also compared the speed of retrieval and display along with relevancy in both systems and found that Federated Search Systems can now compete with Discovery Tools with ease.
I have spoken to many people including librarians who do not have a clear concept of what is the difference between a Discovery Tool and a Federated Search. Then there are sales speak. We hear about Resource Discovery or Web Scale Discovery and I’m not sure what they mean.

So, this is a very simplistic take of mine on the two:

Discovery Tools: Like a key to the store room, full of goodies, neatly labelled and shelved.

Federated Search: more like an archaeological dig, the deeper you dig, the more knowledgeable you become of the surrounding topography.

As one of the speakers mentioned yesterday – search is a dialogue. And a slow search technique can improve search quality over the course of seconds, minutes or longer. In modern days, we have lost sight of that as we agonise over speed and use Google as our benchmark!

Now, as far as I know, there has been no peer reviewed study charting the difference between the two. However, there are numerous studies concerning different types of web resource discovery tools, including Google.
Elizabeth Namei & Christal Young from The University of Southern California Library did a study on the relevancy ranking of Discovery tools, in their case SUMMON, and Google; they produced a report for the ACRL conference in 2015. Although they examined one discovery tool in their study, the findings can be universally applied to other resource discovery tools as well, with a plus minus either way. This was echoed by presenters from Rider University at the same conference. They joined up with Professors Beth Bloom and Marta Deyrup at Seton Hall University Libraries to participate with them on the discovery tool research following a very similar methodology the latter two used in their Google sponsored research entitled “The Truth is Out: How They Really Search.” (http://www.al.org/acrl/sites/al.org.acrl/files/content/conferences/confsandprecons/2015/Dalal_Kimura_Hofmann.pdf)

They identified three key areas as being problematic for students: the lack of an overall understanding of the interrelationship among the library catalogue, databases, the discovery tool, and scholarly publications; failure to implement advanced search techniques (closely related to difficulties in defining topic and scope of research); and failure to locate the full text of articles.
Research shows that the reason relevancy and ranking are of highest priority for any search tool is because most users tend to only look at the first page of results. That is because users believe that web search engines can retrieve and rank web documents more effectively. It implies that ranking or relevance algorithm shape user behaviour.

But Pan et al found that after presenting students with a list of 10 Google results in reverse order, students “were heavily influenced by the position of items in the results list”. (In Google we trust, 813)
Keane et al found that users are often “misled by the presented order of items.” (Are people biased in their use of search engines). They termed this behaviour “satisficing”: the tendency to choose the most convenient and easiest route that leads to “good enough” information rather than the “best” information.

Google does not offer precision field searching comparable to library databases; hence any simplistic searching places enormous pressure on algorithms to produce high quality results (Kristen Calvert: Maximising Academic Library Collections...) However, Google does continually adapt and adjust their ranking algorithms to reflect the change in user behaviour.
A search tool’s ability to adapt to both technological changes and evolving user expectations in order to consistently provide relevant results can inspire intense loyalty.... a search tool that fails to adapt, will be quickly abandoned. (Janyk: Augmenting discovery data, 266)
When I used this slide I knew you would say that I am naturally biased as we are using the system.
So I read up on some recent publications on Discovery tools to see if anything has changed since 2011 when I wrote in my report:

Discovery Tools are modelled on the Google-style approach of building and then searching a unified index of available resources, instead of searching each database individually. They provide unified indexes of the licensed scholarly publications combined with locally held content e.g. the catalogue, repository etc. This approach offers huge advantages in speed and in the logic that can be applied to the presentation and sorting of results.

Recently, Marshall Breeding, in his white paper on The Future of Library Resource Discovery, on behalf of NISO and published in Feb 2015 commented: The current discovery environment in the academic library arena is dominated by a set of products within the genre of index-based discovery services, often marketed as “web-scale discovery services,” which rely on a large central index populated by metadata, full text, or other representations of the content items in a library's collection. As they are based on pre-built indexes,...The universe of discoverable content through these index-based products is inherently limited by the extent to which commercial entities are willing to make these private agreements for data exchange. (p.14) He also noted that when it comes to article level discovery, Stanford University Library, one of the top research libraries in the world, “depends on both its locally developed SearchWorks interface, access to individual databases and collections, and use of federated search tools from Deep Web Technologies for access to article-level resources.” (p8)

National Informations Standards Organisation (NISO).
As more and more information are being accessed online, our Research Community faces a different type of problem, i.e. of access to quality information relevant to their research. And as they are accessing the library online, they, as users, are hidden or unseen. This lack of contact with researchers can lead to a gap between the needs of researchers and what the library provides. This group is tech savvy to a large extent and discerning in their research. So, a Google type search through an index-based discovery service will bring back results that might not be pertinent to their need. However, for an Undergraduate student, it will be a feeling of home from home as they are used to Google. Even though, the study from Rider University provides a different picture (in previous slide).

As our aim is to provide maximum visibility to all our resources and not to be bound by just subject specific, individual database searching that reduces the chance of exposure to a wider number of users, we chose the federated search system over a resource discovery tool. We also realised that although users are tech savvy, they are not experts in searching for the right kind of information as studies show. If we are to provide Information Literacy courses on how to search, why not show them how to search intelligently. Searcher/Explorit provides an intelligent search system through their Latent Semantic Text searching capacity that is not possible in a pre-indexed service like a discovery tool where one depends on the metadata provided by the publisher. Another reason is purely based on economics. A higher ranking Research University attracts more grants; so it makes a business sense to enhance our researchers’ experience by providing the necessary tools.

We are No. 1 in receiving research funding. Govt grant is diminishing; hence grant money is essential for us to survive.
Searcher offers our users the following:

- **Clusters that think** – It analyses results and produces “clusters” that represent a new and powerful way to navigate search results. It uses Latent Semantic Analysis; it analyses the relationships between a set of documents and the terms contained within the documents to produce a set of concepts related to the results.
- **Mobile compatibility** - The updated Explorit Everywhere! uses only a single URL for sharing between smartphones, tablets, and desktop computers.
- **It de-dupes results** - The Explorit application de-dupes on multiple fields to ensure that users don’t see duplicate results across multiple sources. Various fields can be matched (field A OR field B) or (field C AND field D) using boolean operators.
- **Ranking** – Searcher/Explorit specifically returns up to 100 of the top results (unless otherwise specified) from each source to ultimately avoid overloading the user with information that may not be relevant to their search. Ranking is based on relevance, with the most relevant results becoming the highest ranking results. This is done by (1) creating root-words for the query terms and results, (2) conducting relevance weighting for a number of factors, and then (3) use their proprietary algorithms to assign rank for each result in the list of results.
As I said earlier, we needed to find a tool that will satisfy a majority of users as it is impossible to please everybody.
Searcher/Explorit offered us that opportunity. It offers a single search interface to quickly find relevant, real-time information from the sources you select. Researchers familiar with a wide range of resources know that some database search engines do not have the capacity to process advanced logic such as parenthesis, wildcards, many advanced search fields or even Boolean operators. In contrast, some search engines can handle extremely complex queries, replete with parenthesis, quotations, and Booleans and wildcards, handing the user a golden platter of relevant results. The connector acts as a proxy for the researcher by submitting the query to the resource, then retrieving the results for Searcher/Explorit Everywhere! to rank against results from other sources. In many cases, the query string is submitted to the source exactly as it was entered by the user. In other cases, however, the query must be reshaped to make the string more acceptable to source idiosyncrasies.
But, for maximum discovery, it is better to start with a simpler search to retrieve a broad results set from most or all of the selected resources. Once the results are retrieved, the informed researcher can narrow that field, using filters, sorts, tabs and clustering, or iterate their search based on their initial findings. Although this process may seem backward and less efficient initially, it ultimately delves deeper into those entrenched databases containing pertinent information.
One word of caution: “known item searching”, i.e. one word or common word titles will not return absolute relevant results in either a discovery tool or a federated search system, as was proved by numerous studies.
Rolling it out
We asked the Working Group to assist me during the implementation. This took the form of consulting with subject librarians as to what databases to include, and which database should go under what subject. The most difficult one was to decide on databases in the Quick Search category. Once the decision was made, I took over from the Group and started liaising with the vendor regarding implementation.
We found that although most vendors were quick to respond, some big vendors seemed unable to co-ordinate their various divisions to work together. It took us nearly 4 months to get IEEE to include the Federated Search Server IP in our own account which meant that although we (the system) was able to retrieve the required information, users were unable to access the full text!! Most of the Law databases asked for a legal contract with the FSS (Federated Search System) vendor before they are allowed to search the databases! The same happened with Web of Knowledge. Some database vendors flatly refused access citing legal and technical difficulties.

We went live in Oct 2011. The vendor arranged for on-site training for staff. Quite a lot of questions came up that required looking into more thoroughly. How the articles are ranked is a big issue for us, even after 3 years of using it. In addition, the entrenched habit of single resource searching is difficult to overcome. Gimmicky marketing is there to dazzle users and librarians alike. Unfortunately, very few people make the effort to look behind the gloss to see what is the ranking algorithm being used, or whether the relevance ranking is bringing up the desired results.
Personalising our Customer Experience

As I have already said earlier, visibility of resources is directly linked with good research and retention of researchers in an academic institution. It is an academic library’s USP, that has direct link to top class research output and to University ranking.

As Searcher uses Latent Semantic Analysis in information filtering, information retrieval, indexing and relevancy rankings, it brings back results that will not be otherwise retrievable in an ordinary web search.

Documents Retrieved over the same 3 year period:
We can see from this chart the number of documents retrieved per month for User searches. For example, January – in 2013, we had 11265 user searches, 212704 Source queries and retrieved 5005618 documents. In 2014, we had 11643 user searches, 219966 Source queries and retrieved 5656135 documents.

In 2014 January, with 378 more user searches, the system brought back 650517 more documents.

(In 2015, in January, we had 9496 user searches, 180785 Source queries and retrieved 3605065 documents.)

The total documents retrieved in 2014 are 27527753
In 2015, up to August, the total is 23982483)
Take 2013 - 2014 for example

Just having a fantastic search system does not mean that it will be used. As you see from the chart, in Jan 2015, we dropped in usage, and up to Aug, usage is only about 87% of what was used in the same time in 2014.

What happened? Training didn’t happen! Training in how to use it cleverly is the key. If we look at 2013 and 2014 we will see usage peaked just before and after the months of training. And as the system is evolving all the time, adding new facets to its search strings, we need to keep on top of it. Librarians have a natural distrust towards using a new system that would require re-orientating their thought process, sticking instead to tried and trusted individual resource searching. Also, institutional culture of working in silos runs deep; for example, although the working group that recommended the product was cross-divisional, when it came to training, nobody wanted to take ownership.

I am using this example as an echo of what other Enterprise stakeholders already mentioned - that a discovery tool or a search system knows no silos. However, it is up to us to break down the internal invisible barriers and let everybody buy into the concept; otherwise there will be a long, uphill climb ahead!

I’ll be training again this Nov and will repeat next Spring to see the uptake.

The other problem is that students are not a static body; they come in, graduate and leave. So, for us, training has to be factored in as part of the cycle. We just hope that the training they receive in using a search tool will stand them in good stead in life later on.

For more exposure we are also adding it to our LibGuides portal so that users can access it from lots of web pages.
In UCC we understand the value of Libraries for Research; that good libraries help institutions to recruit and retain top researchers.

Libraries help researchers win research grants and contracts
Libraries promote and exploit new technologies and new models of scholarly communications.
Repositories increase the visibility of the institution and raise its research profile
Outward-facing libraries contribute to institution-wide initiatives
Specialist staff work in partnership with academic departments
Connecting with researchers enhances the value of the library’s services
Dedicated spaces provide a better work environment for researchers
Easy access to high-quality content is a key foundation for good research
Libraries are a physical manifestation of the values of the academy and of scholarship

The comments on the slide are a testament to that as is our award of ‘Excellence in the provision of services for a Digital Library’ – two year in a row.

The use of the Library is changing from just a place where collections are kept to a place of collaboration, reflection, inspiration, learning and study; we need to be mindful of what and how to acquire, and how to provide enhanced accessibility and flexibility.
We have to provide better ways of resource discovery in response to user demand, be they pre-harvested or real time. We need to look at the University’s strategy on research and teaching & learning and position the library to support that. We have to be confident enough to put our arguments across regarding collection development and management that would underpin our University strategy in order to obtain necessary funding

We are the top university in receiving research funding. As a result Govt grant is diminishing. So Research grants play a pivotal role in the University’s survival as a place of research excellence.

User Comments...

- “Make compulsory for certain programmes”.
- “Enjoyed the fact that we can create our own search engine – very helpful!”
- “The searcher function is enormously beneficial as it searches across a number of databases. As a law lecturer, it is difficult to recommend one particular journal database as significant journals may be found in a variety of databases. Instead of recommending a particular database, I can recommend the searcher.”
As we are gathered here at this Enterprise Search Europe conference, many of you would be thinking: this is well and good, but what has it got to do with Enterprise Search?
Well, everything really!
I put in Enterprise search on Google and received about 60,300,000 results (0.51 seconds). Selected IBM site and came face to face with the word Guardium®. Being inquisitive, I went to Google again and typed in the word and found in Wikipedia that it is an Israeli unmanned ground vehicle (UGV) used to combat and guard against invaders along Gaza’s border. Needless to say, thoroughly alarmed I abandoned my search immediately, closed the browser, and went back to IBM site to get a gist of what Enterprise search is. I gathered that “Enterprise Search represents a powerful replacement for Quick Search. Existing Quick Search features are retained and enhanced by the addition of distributed search functionality, topology navigation, and an investigation dashboard. Each of these features are interrelated to provide a dynamic real-time search experience. For example, narrowing the search scope through the topology view automatically updates the search results, and additional filters applied to the search results are automatically reflected on the investigation dashboard.”
When I mapped it against a federated search system like Explorit/Searcher, I found that there is nearly a perfect match!
There are a number of challenges facing the Universities and other Academic Institutions at present - public-private partnership, change in user demography bringing in a change in user behaviour. At the same time the Discovery/Search environment is changing rapidly; we need to look for the MVP in whatever product we use; a product that will not restrict growth, but is scalable and enhance an organic development of the Institutional knowledge repositories.
In our case, the use of Searcher/Explorit became our MVP, not restricting our growth but enhancing it, letting us grow organically.